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Abstract—Detecting and isolating faults in Cyber-Physical Sys-
tems (CPSs), e.g., critical infrastructures, smart buildings/cities
and the Internet-of-Things, are tasks that do generally scale
badly with the CPS size. This work introduces a model-free Fault
Detection and Diagnosis System (FDDS) designed having in mind
scalability issues, so as to be able to detect and isolate faults
in CPSs characterised by a large number of sensors. Following
the model-free approach, the proposed FDDS learns the nominal
fault-free conditions of the large-scale CPS autonomously by
exploiting the temporal and spatial relationships existing among
sensor data. The novelties in this paper reside in a) a clustering
method proposed to partition the large-scale CPS into groups
of highly correlated sensors in order to grant scalability of the
proposed FDDS, and b) the design of model- and fault-free
mechanisms to detect and isolate multiple sensor faults, and
disambiguate between sensor faults and time variance of the
physical phenomenon the cyber layer of CPS inspects.

I. INTRODUCTION

Arge-scale Cyber Physical Systems (LCPSs) constitute a

fertile research domain of great impact. These systems
are typically composed of a very large number of heteroge-
neous units endowed with sensing, processing, communica-
tion and (possibly) actuation abilities. Acquired datastreams
may be processed in a centralized, distributed or hierarchical
way depending on the needs of the envisaged application(s)
and its(their) constrains. Monitoring and control of critical
infrastructures, smart buildings/cities, Internet-of-Things [1],
[2] represent relevant application scenarios of LCPSs and a
significant increase of interconnected objects is expected in
the next few years [3].

Unfortunately, when operating in real-world (possibly harsh)
environmental conditions the probability of having faults af-
fecting the LCPS increases (as it scales with the increase
in system complexity) unless suitable actions are taken into
account. In particular, faults at the sensor level of LCPS
units might induce erroneous data that, once processed by
the envisaged application(s), might lead to wrong decisions
or reactions [4f]. In this paper we focus on faults affecting the
sensors of the LCPS units.

Fault Detection and Diagnosis Systems (FDDSs) [J], i.e.,
systems aiming at detecting, isolating, identifying and (when-
ever possible) accommodating faults [[6]], [7], have been widely
studied in the literature and employed in many different
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application scenarios (see [8] for a comprehensive review). Un-
fortunately, FDDSs proposed in the literature mostly consider
CPSs characterized by a small-medium number of sensors and
suggest solutions that typically do not scale well with CPS size.
In addition, most of existing FDDSs

e assume the availability of an a-priori (physical) model
for the system under observation, information hardly
available in large-scale systems;

e assume the single sensor fault hypothesis that hardly holds
when a large number of sensors is considered;

e consider that time variance in the physical phenomenon
under inspection affects, if present, all the sensors of the
CPS.

Even though a detailed analysis of existing literature is given
in Section we comment here that available FDDSs for
LCPSs rarely consider more than 15 sensors and, as such, it
is improper to consider them large-scale systems.

Inspired by [6], [9], [10], this work proposes a novel model-
free approach for FDDSs able to manage multiple faults and
disambiguate between faults and time variance in the physical
process under inspection (representing the physical layer of the
LCPS). Unlike traditional FDDSs, a model-free approach does
not assume the availability of (analytical) models describing
the system under observation neither in nominal nor faulty
conditions. The motivation behind considering such an ap-
proach comes from the fact that analytical models (whenever
available) might not be accurate enough in LCPSs for fault
detection/diagnosis purposes and/or their execution might be
computationally demanding in large-scale systems, hence not
supporting real-time diagnosis. The main characteristics of
model-free FDDSs reside in their ability to autonomously learn
both the nominal conditions of the system under inspection and
the fault dictionary from acquired data during the operational
life.

The proposed model-free system for fault detection and iso-
lation in LCPSs relies on a preliminary clustering phase based
on a novel correlation-driven clustering algorithm that groups
sensors according to the temporal and spatial relationships
existing among acquired sensor data. In this way the com-
plexity of designing fault detection and isolation mechanisms
for LCPSs reduces by focusing on each cluster of sensors,
thus scalability is implemented. Afterwards, for each cluster
of sensors, a Hidden Markov Model (HMM)-based mechanism
operating both at the single unit and the cluster of units level,
inspects incoming datastreams for multiple fault detection and
isolation as well as disambiguates faults from time variance
affecting the physical layer of the LCPS.

We emphasize that the proposed correlation-based clustering
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algorithm is able to operate on heterogeneous sensors (i.e.,
sensors transducing different physical quantities). This is a
relevant progress in the datastream-clustering field (e.g., see
[11]) where solutions typically assume time-series coming
from homogeneous sensors. The effectiveness and efficiency
of the proposed FDDS have been experimentally evaluated on
synthetic and real-world datasets coming from rock-collapse
monitoring and WiFi Network Management applications.

The paper is organized as follows. Section [lI] analyses the
related literature, while the considered problem is formulated
in Section A general overview of the proposed FDDS along
with the proposed clustering algorithm are described in Section
The model-free fault detection and isolation mechanisms
are detailed in Section [V] Experimental results are given in
Section [V1

II. RELATED LITERATURE

The literature groups FDDSs into model-based and model-
free methods.

A. Model-based methods

Most of existing works for fault detection/diagnosis in CPSs
request the availability of analytical models describing the
physical process under investigation [[12[]-[16].

In this direction, [[12] proposes a decentralized method for
detecting and isolating multiple sensor faults in large-scale
systems based on observers (agents) monitoring subsets of
sensors. The detection of faults by each observer is based
on an adaptive threshold on the residual, i.e., the discrepancy
between what predicted by the a-priori known model and
the acquired measurements. There, multiple-fault detection is
achieved thanks to an aggregation mechanism that processes
decisions gathered by all the observers. The considered ap-
plication is a robotic-manipulator system encompassing eight
sensors. Similarly, a nonlinear model-based observer method
for detection, isolation and identification of multiple faults
affecting actuators and sensors is proposed in [[13[]. In this
work a simulated waste water-treatment system endowed with
six sensors and four actuators has been considered. A similar
work is described in [14]], and applied to a three-tank system
with six sensors and two actuators.

A different approach is presented in [[15] that relies on the
analysis of the residuals for sensor fault detection and isolation.
This method has been applied to a non-isothermal continuous
stirred tank reactor and a ternary distillation column envisaging
nine sensors. An analytical redundancy-based approach is
proposed in [[16] that also works on residuals for fault detection
and isolation. The experimental campaign includes synthetic
data derived from a three-tank system endowed with five
sensors and two actuators. In [17], the authors designed a
hybrid Kalman filter integrating a mathematical model of the
system and a number of piecewise linear (PWL) models. Fault
detection is achieved by interpolating the PWL models using
a Bayesian approach. Their method is applied on a dataset
coming from a simulated gas turbine engine with five sensors.

B. Model-free methods

A contained literature = for  model-free  fault
detection/diagnosis is available [18]—[22]. These solutions
generally rely on machine-learning or statistical mechanisms
to infer a model for the system under inspection directly from
data.

For example, a method based on Auto-Regressive with
eXogenous input (ARX) model to characterize time-invariant
relationships between sensors is presented in [19]. There,
fault detection relies on the analysis of residuals, while fault
isolation employs a graph-based analysis to identify anomalous
patterns. The considered dataset refers to a physical plant
containing 1091 sensors. There, the case of heterogeneous
sensors is not considered, and time invariance for the plant
under inspection is assumed.

A data-driven method based on Principal Component Anal-
ysis (PCA) and Fisher discriminant analysis to diagnose mul-
tiple faults is presented in [20]. PCA is applied to raw data
for detecting anomalies by checking residuals, while Fisher
discriminant analysis isolates the faults. The application refers
to an air-handling unit composed of 13 sensors. An adaptive
monitoring method based on residuals coming from a sliding
window is presented in [21]. The method is applied to a real
air-compression process monitored by 8 sensors.

Neural networks have been often considered in model-free
solutions to model the unknown physical process. For example,
[22] considers Artificial Neural Networks to identify and
isolate multiple faults in an industrial motor network composed
of 6 sensors. There, the fault dictionary is assumed to be a-
priori available. Finally, a swarm intelligent-based approach
for the diagnosis of multiple faults is proposed in [18]]. The
fault diagnosis problem is modified so that the presence (or
absence) of a specific fault is associated to each vertex explored
by an ant. The experimental framework considers an industrial
remote monitoring of operating machines with 20 sensors.

III. PROBLEM DESCRIPTION

Let us consider a LCPS composed by a set & =
{s',...,sN} of N sensors monitoring an unknown and,
possibly, time-varying process P. Sensors in S can be homoge-
neous (measuring the same physical quantity) or heterogeneous
(measuring different but related physical quantities).

At each time instant ¢, sensors in S provide the measurement
vector X; = [z},...,2]], where i € R is the scalar
measurement acquired at time ¢ by sensor s’. Without loss
of generality sensors in S are assumed to be synchronous and
sampled with the same sampling frequency.

We assume that P is initially stationary since time variance
typically occurs only later on in time. During the operational
life sensors in S might be affected by faults so that, for the
generic sensor s° affected by a fault at time ¢, the datastream
xis is perturbed as follows

i xl t <t

ey, t>t

where ¢(-) represents the (possibly nonlinear) fault function,
which is characterized by a time profile and a signature [§|] of

ey
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the fault. The former refers to the fault-time duration, e.g.,
permanent, transient or intermittent, and the fault-evolution
model, e.g., abrupt or incipient; the latter characterizes the type
of fault, such as offset, drift or precision degradation. Here, we
permit the CPS to be affected by concurrent multiple sensor
faults.

We model time variance as a change in P, i.e., the system
model evolves from P to P’ at an unknown time instant
t,- Disambiguation between faults and time variance is an
important ability for the FDDS since the LCPS might need
to react in different ways to the change, e.g., as presented in
(23]

The proposed FDDS for LCPSs inspects data acquired by
S to promptly detect and isolate multiple changes as seen at
the readout of the sensors, as well as disambiguate between
faults and time variance. We emphasize that the proposed
FDDS is independent from the specific network topology or
implemented routing protocol.

IV. THE PROPOSED MODEL-FREE FAULT DETECTION
AND DIAGNOSIS SYSTEM

In this section we introduce the proposed FDDS for LCPSs,
whose general architecture is given in Fig. |l The key idea
of the proposed solution resides in its ability to model the
relationships existing among acquired sensor datastreams s
and autonomously learn the nominal (fault-free) conditions of
‘P. Faults and time variance are then perceived as deviations
from these nominal conditions.

This is a crucial aspect in the proposed model-free solution
since the sensors of the LCPS open different but related views
of the same physical phenomenon, thus time variance in P
would affect a set of (highly) correlated sensors allowing us
to discriminate between faults and time variance in P. As such,
we do not assume that time variance in the LCPS is perceived
by all sensors in S.

As shown in Fig. the proposed FDDS requires the
following steps:

1) cluster sensors {s',..., sV} according to the functional
relationships existing among datastreams {x},..., 2N},
t = 1,2,... by means of a novel clustering algorithm
based on the k-medoids clustering mechanism comple-
mented with a pairwise-dissimilarity metric based on
cross-correlation;

2) build a HMM-based change detection mechanism for each
cluster so as to detect variations w.r.t. the learned nominal
conditions of P;

3) execute the change detection mechanism during the op-
erational life and, if a change is detected, disambiguate
between sensor faults (and, in this case, isolate the af-
fected sensors) and time variance in P.

The proposed FDDS requires the availability of a training
set 1'S encompassing data acquired by all sensors for the first
T time instances:

g T
TS=|: .. i, @)
ay af!

Input: TS, vimaz-Imaz;

1. Create T}, Vi, as in Eq. [3|;

2. Initialize etor = [|;

3.for v =1: v, do

4. Apply k-medoids algorithm I,,,,, times on T3 and

get O = {Ct,...,Cv};

5. if checklsolation=true then

| Go to next clustering setting, v=v+1;

end

6. Initialize e?,, = [];

7. for j=1:v do

8. e; = 0;

9. for i=1:|C7| do
Create MISO model M? using Tis;
Compute the error of Mzéj on Vs and denote
it as e%,ts; ‘
e, =e;+ey,

end

10. 6yal = [eZal; e’t'/|cm|]

v

end
11. esor = [eror; sum(el,;)/v];

end
12. Find min(es,:) and identify its index;
Output: 1y ;

Algorithm 1: The algorithm for clustering N datastreams.

that is assumed to be both time invariant and fault-free (neither
faults nor changes in P have occurred up to time 7). T'S is
used to configure the proposed FDDS.

A. Sensor Clustering in Large-Scale Cyber-Physical System

A novel cross-correlation-based clustering algorithm in-
spired by the k-medoids clustering mechanism [24] is pro-
posed to cluster sensors in S based solely on the functional
relationships existing among datastreams xis. This is a crucial
difference w.r.t. datastream clustering solutions, e.g., [11],
which generally consider time-series coming from homoge-
neous sensors. It should be highlighted that an algorithm able
to process datastreams coming from heterogeneous sensors is
necessary in the context of CPSs (and even more with LCPSs),
where assuming homogeneous sensors is not realistic.

B. The k-mediods algorithm

The main characteristic of the k-mediods clustering algo-
rithm is its ability to incorporate the more general concept of
pairwise dissimilarity as a metric, rather than the Euclidean
one (as done in the traditional k-means algorithm). This
guarantees a more robust clustering phase since the effects
of outliers reduce significantly [24].

The k-mediods algorithm operates as follows: given the
number of clusters v to be considered (which is a user-defined
parameter), the algorithm randomly selects v elements from
the set as medoids. Then, the algorithm associates each element
of the set to the closest medoid and computes the overall sum
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The general idea of the proposed multiple fault detection and isolation system for LCPSs. After sensors clustering (network partitioning), the proposed

algorithm relies on an HMM-based change detection mechanism activating the intelligent layer, when necessary. Isolation of multiple faults and detection of

changes in time variance follow.

of pairwise dissimilarities. This procedure, i.e., the random
medoids selection and element association to each medoid, is
repeated I, iterations and the cluster configuration charac-
terized by lowest sum of pairwise dissimilarities chosen.

In our specific case, the elements to be processed by the
k-medoids algorithm are the streams of data in 7'S, which is
divided into training 73, and validation V;4 sequence as follows

1 1 1 1
J,‘l - .T/‘A .Z‘A+1 .. JCT
ns: : . 7%5: : . : (3)
N N N N
xy ... Ty N xp

Tis is used by the k-medoids algorithm to cluster sensors
according to the estimated cross-correlation between the re-
spective datastreams, while Vi, is used for identifying the
proper number of clusters 14 as shown in Alg. [T] and detailed
in Section [V-DI

As pairwise-dissimilarity measure d; ;, we propose the
complement of the cross-correlation between streams of data
acquired by sensor s® and s’ computed on T}, and T}, (i.e.,
the ¢-th and j-th row of T;s) defined as

dij =1—Coryy( ts,T ), 4)
where
COTT( ts’T )
(T, — T, )T, — T,,)
V(@ = To)(T, — Th ) (T — T, ~Thy

being T,, and T, the average time-series of all datas-
treams over T, while ' is the transpose operator. 79 =

argmax(Cor, (T}, T7,)) represents the time-lag maximising
T

the cross-correlation between T}, and T7,. d;; is bounded,
ie., 0 < d;; < 1. The lower the d; ;, the larger the cross-
correlation between the respective datastreams. In the proposed
FDDS, the implementation of the k-medoids algorithm is
based on the Partitioning Around Medoids presented in [25].

C. Modelling the functional relationships of the sensor datas-
treams in a cluster

As described in the previous section, the outcome of the
k-medoids algorithm is a set of v clusters grouping highly
correlated sensors of S, ie., C¥ = {C1,...,C,}, where C;
contains the indices of sensors belonging to cluster j. Then,
for each cluster j = 1,...,v, we create |C;| Multiple-Input
Single-Output (MISO) predictive models (|- | is the cardinality
operator), where the i-th sensor (with ¢ =1, ...,|C}|) belong-
ing to cluster j represents the single-output and the remaining
|C;| — 1 sensors represent the input

For this purpose, we rely on the Input-Output MISO pre-
dictive model ¢*7:

~i,J 0,5 (n0sd i,7 ]
xt7 - g ’ (xt, 1> xt7—27 LI} xt;,,-ﬂ (5)
15 1.J 1,5
Ty Xy T
IC;l3 , 1C;1.3 ICld @A
Ty ST t_Tlcj‘,G)

where the parameter vector © and 7s are suitably estimated
on the rows of T}, referring to the sensors belonging to cluster
J.

In this work we consider the specific case where g% is
linear. Linear models are characterized by a contained compu-
tational complexity and are particularly appropriate whenever
the physical process investigated by the LCPS is ruled by linear

!In principle we might also consider overlapping subsets of sensors, if useful
to the fault detection/isolation purposes.
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ordinary differential equations, a situation that represents a first
order model for many physical systems. Among the linear
input-output MISO predictive models [26]], we considered
Auto-Regressive with eXogenous input (ARX) models, here
defined in vectorial form as

IC51.d

P B g
t ([zlys- -, t—1C51

1,0) (6)

,0y] is the vector of model parameters

Cjlj
xlt_]Tléj\]) and

() the scalar product operator. We stress out the fact that
using linear models is not a restrictive choice since we are not
specifically interested in the prediction accuracy of the model
but, instead, in opening a view on the relationships existing
among Sensors. o

To ease the notation, we refer in the sequel Mé_)’J to be the
ARX predictive model of the i-th sensor belonging to the j-
th cluster. The associated parameter vector ©%Js represents
the information requested by the HMM-based mechanisms for
fault detection and isolation described in Section [Vl

where © = [fy,...
(being w the cardinality of vector [z;7,,...,

D. Discovering the optimal number of clusters

One crucial limitation of the traditional k-mediods algo-
rithm, as described in Section [IV-B}| is the fact that the number
of clusters ¥ must be provided. To overcome this limit we
introduce a solution to select the proper number of clusters 1/
through an exploration of different values of v. The selection
criterion is based on evaluating the ability of the estimated
models Mg’s in Eq. (6) upon effectively capturing the rela-
tionships existing among the acquired datastreams within each
cluster.

More specifically, given C¥ = {Ci,...,C,} the set of
clusters provided as output by the k-mediods algorithm given
v (line 4, Alg. [TI), we compute the overall reconstruction
error e, of Mg’s on Vi, (lines 6-10, Alg. . Denote the
predictions of model Mg’ on Vi, as Y7’ and let ¢, ; be the
reconstruction error measuring the differences between Vi
and Y{?’. The overall reconstruction error is calculated as

v IC51
ey = = 21 | Clj| Zl e; j. We emphasize that e’,, measures
= i=
how welljthe estimated ARX models in Eq. [6] given the
clusterization C¥* = {Ci,...,C,}, are able to effectively
predict the datastreams in V.

The optimal number of cluster 1 is chosen (lines 11-12,
Alg. |1) as the one minimizing the reconstruction error e, ; on

ts

vo = argmin (ey,), (7)

1<v<Vmaz
where Vy,4, is a user-defined parameter. In order to create
the MISO ARX models in Eq. (), the clusters settings C”s
characterized by one or more clusters with isolated sensors
(i.e., clusters composed by just one sensor) are discardecﬂ (line

2It should be noted that two normalization processes are involved in order
to compare the considered cluster sets. The former refers to the MISO models
where the sum of errors e; is normalized by the number of sensors |C}|
included in the specific cluster j. The latter refers to the cluster level where
the sum of errors ey ; is normalized w.r.t. the number of clusters v.

5 of Alg. [1).
The final outcome of the proposed correlation-based clus-

tering algorithm is the set of 1Y clusters, i.e., ¢’ =
{Cy,...,Co}.

V. HMM-BASED MECHANISMS FOR FAULT DETECTION
AND ISOLATION

The proposed FDDS is organized as a two-layer architecture
where the lower layer encompasses the HMM-based mecha-
nisms for change detection while the upper one disambiguates
changes between faults and time variance and, subsequently,
isolates the faults (whenever they occur).

A. HMM-based change detection layer

The considered HMM-based change detection mechanism
[el, [27]Aaims at monitoring the evolution over time of pa-
rameter ©"7s estimated on the MISO models defined in Eq.
|§I through a Hidden Markov Model. Vector parameters ©%J
are estimated on overlapping windows of size w and step h.
The HMM-based change detection mechanism requires the
training of a HMM characterizing the stationary conditions.
Variations w.r.t. these conditions are perceived as changes in
the statistical behaviour of estimated parameters ©%7, hence
requiring a further analysis to discriminate between faults and
time variance, and isolate the faults. B

In more detail, a HMM H®J operating on Mg’ is defined
by {S, P(©%|®), A, '}, where S is the number of states, P
the pdf of each state, ® comprises the set of values [, o]
characterizing the Gaussian mixture of each state, A is the
state transition matrix, 7 the initial state distribution. The
HMM-based change detection mechanism first trains H; ; on
the fault-free training sequence of estimated parameters ©%7s
computed on V;, (line 1 of Alg.[2). Afterwards, at time ¢ during
the operational life of the FDDS, the parameters estimated on
the incoming data are provided to the HMM H; ; and their
statistical compatibility is measured in terms of log-likelihood
Ly’ (line 3 of Alg. . If the log-likelihood L;” falls below an
automatically-defined threshold 7},” (computed as described in
[6]), a change in the MISO model Mg’ is detected (lines 4-
5 of Alg. [2) and the intelligent level is activated for further
processing.

B. Intelligent layer for fault isolation/time-variance

When a change has been detected by a HMM-based change
detection mechanism at time ¢ , the intelligent layer is activated
to understand whether the specific change corresponds to a
fault affecting one of the sensors of the cluster or it represents
a time variance in P.

In more detail, given a detection in the HMM-based change
detection mechanism inspecting Mg’, i.e., corresponding to
the i-th sensor of the j-th cluster, the intelligent level gathers
the log-likelihoods L] produced by the HMM change detection
mechanisms of the other sensors in cluster j at time ¢ ,

. ; ; G511, .
ie. L] = [L;7,.. .7th il ], as well as the corresponding

thresholds, i.e. T/ = [T}/, ..., 7)™ (line 2, Alg. j3).

2471-285X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETCIL.2016.2641452, IEEE

Transactions on Emerging Topics in Computational Intelligence

Input: Vi, w, h, 1, j ;
1. Generate HMM, HJ = {S, P, A, 7} on ©%Js
estimated on V;; windowed using length w overlapping
by h and compute the threshold 7}, as described in [6];
while (Incoming data are available at time t) do
2. Compute the parameter vector O of the
prediction model Mg’ ;
3. Compute the log-likelihood L7 of ©%Js given
H",
if L)/ < T, then

4. Change detected in Mé’j ;

5. Activate the fault isolation/time-variance layer;
end

end

Algorithm 2: The HMM-based Change Detection mecha-
nism.

Input: Detection at sensor 7 of cluster j, H*J,
1= 1,...,|Cj|;
1. HMM-based change detection mechanism associated
with H*7, ¢+ =1,..., |C’3 , detected a change at time ¢;
7 7 C> 71,7'
2. Gather L = [LM7 .., L1 and
G IC51-1.45.
T =[T,7,....T7,” l; '
3. Compute the average values at the cluster level, i.e.
- 1C51 - 1C51
) _ 1 A S 1 i .
Th - ‘C}‘fl Z 7T}ZL’ Lt - |C;|71 Z 7LZ >
-, i=1,i#i i=1,i%#3
4.if L] < T then B
| Time-variance at cluster j;
else o
‘ Fault detected at sensor s*J;
end o
Output: Fault isolation at sJ or time variance detection
at cluster j;

Algorithm 3: The considered HMM-based mechanism for
fault isolation/time variance.

The intelligent layer analyses the likelihoods Lz and thresh-
olds T as follows: it computes the average values of the
thresholds 77 and log-likelihoods L] associated with cluster

.. . i . i
j, e T, = [ ) _Th, L, = [eEs > _Lt, (line
i=1,i£7 i=1,i#1

3, Alg. . When fi < aTiL (line 4, Alg. , the intelligent
layer signals a time variance perceived in cluster j since
all sensors in cluster j are perceiving a variation in their
statistical behaviour (possibly with different magnitudes or
signatures). The correcting factor a is a user-defined parameter
incorporating domain-expert knowledge (water supply system,
communication network, etc.). On the contrary, when Li >

aTi, the intelligent layer associates the change to a fault
affecting sensor ¢ of cluster j.

VI. EXPERIMENTS

The aim of this section is to experimentally validate the
effectiveness of the proposed FDDS for LCPSs dealing with
multiple faults and time variance. To achieve this goal we
consider a synthetic experiment and two datasets coming from
real-world LCPSs, i.e., a rock-collapse and landslide monitor-
ing system deployed on the Italian Alps [28] and the WiFi
network of a large university in northern Italy (Politecnico di
Milano).

A. The synthetic experiment and the real-world datasets

The synthetic experiment: The generation of the synthetic
dataset comprises two steps. At first, we generate streams of
data by using a cosine function with period 57 corrupted by the
zero-mean Gaussian noise 7 ~ G(0,0.5). In the second step

we generate the NV datastreams x}s, ¢+ = 1,..., N according
to the ARX(2,2) models:

a:i = aixi_l + aéxi_z + bix{_l + béx{_Q +n ®)

where af,ab,bl, b} are randomly drawn from a uniform dis-
tribution U = [0, 2] and x]s refer to the previously generated
datastream. Each experiment lasts 8000 samples with the first
T = 5000 samples used for training. We considered two
different scales of the LCPS, i.e., N = {30, 50}.

The real-world LCPSs: The first real-world application
refers to a rock collapse and landslide forecasting system,
where a hybrid wireless-wired monitoring system gathers data
from a mountain environment to forecast (possible) rock col-
lapses [28]], [29]. The system, which has been deployed on the
Italian Alps, encompasses N = 13 sensors (6 temperature, 4
clinometer and 3 crackmeter sensors). The considered dataseﬂ
lasts 2844 samples, while the sampling period is 1h. Here, the
first T = 1500 samples are used for training the FDDS.

The second real-world LCPS refers to the WiFi network.
More specifically, the considered dataset refers to the uplink-
traffic (WiFi-U) and downlink-traffic (WiFi-D) measurements
recorded by 28 hot spots measuring the upload and download
traffic within the University in October 2015 leading to 56
datastreams (virtual sensors), whose length is 4000 samples.
The first T' = 2500 samples are used for training, while the
sampling period is 5 minutes.

B. Fault and time-variance modelling

In order to quantitatively assess the performance of the
proposed FDDS, we artificially injected multiple faults and
time variance in both the synthetically-generated and the real-
world datasets.

As regards the multiple faults, we randomly select a subset
Sy of sensors in S, where the cardinality of S; ranges from
5% to 15% of N. Then we artificially inject a perturbation on
sensors in Sy at time ¢*. Here, two kinds of perturbations are
considered; for the generic sensor ¢ in sy

3The dataset can be downloaded at the following URL http://roveri.faculty.
polimi.it/software-and-datasets/
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e stuck-at,
, b t<tt
xl =" 9
t {azt t >t ©)
e abrupt multiplicative,
} 2 t <t
b =<7t 10
¢ {awi, t>t*, (10)

where oo = {0.15,0.3}. These fault models represent two large
classes of real-world faults: the stuck-at refers to a sensor
malfunction where the sensor output is stuck over time to a
fixed value, while the abrupt multiplicative one refers to a fault
affecting, in an abrupt way, the calibration of the sensor [30].
In the synthetic dataset, we consider ¢ = 7000; in the rock-
collapse and landslide monitoring system ¢} = 2644, while in
the WiFi network ¢; = 3500.

Differently, time variance is modelled by a) randomly
choosing a sensor in S, b) sorting all the other sensors in S
according to the cross-correlation on the respective datastreams
in 7S, and c) selecting those sensors characterized by the
largest cross-correlation values. In particular, we considered
three configurations for time variance where the number of
selected sensors is {30%,50%,70%} of N. Once the subset
of sensors has been selected, time variance is introduced by
changing the ARX parameters of respective models (Eq. [8)
from 6 = {ah ag, bl, bg} to 9)\ = {a1(1+)\), a2(1+>\), b1(1+
A),ba(1 + A)}, where A ranges from 0.05 to 0.1. The change
in the time variance starts at the time instant ¢, = 7000.

The simulation results associated with the synthetically-
generated data are averaged over 100 runs.

C. Proposed solution

The proposed FDDS has been configured as follows. The
HMM considered by the HMM change detection mechanisms
has been set according to a fully connected topology (ergodic
HMMs). The number of states of the HMM is selected from the
set {3,4,5,6}, while the number of Gaussian f_unctions{z_f] from
the set {2,4,8,16,32,64,128}. Models Mg’s are selected
through a search performed in the validation set V;;. The
autoregressive and exogenous component orders of (5) are
identified on V4 in the range 1 to 6, while I,,,,, = 200. The
frame length w of the HMM change detection mechanism is
set to 100 with i = 1 except for the WLAN dataset, where
w = 1000 and h = 1.

The proposed FDDS is contrasted with the solution pre-
sented in [6], where no clustering mechanism is considered and
relationships among sensor datastreams are modelled through
SISO predictive models. [6]] was selected as, at present, there
does not exist any FDDS in the literature for LCPSs able to
deal with time variance in P.

41t should be noted that the state search for the HMM which explains at best
the datastream is performed only at the cluster head coordinating the cluster
of units, i.e., the sensor with the minimum distance defined in Eq. with
respect to all the sensors belonging to the cluster.

D. Figures of merit

To measure the ability to promptly detect and correctly
recognize the occurrence of multiple faults/time variance, we
consider the following four figures of merit:

1) False Positive (FP): it measures the times a change is
detected by the FDDS, while it is not present. In case
of multiple-faults, a FP occurs either when a change is
detected in sensor s¢ before ¢; or in a sensor that has not
been affected by the fault. In case of time-variance, a FP
occurs when the change is detected either before ¢} or in
a sensor not affected by the time variance procedure as
described in Section

2) False Negative (FN): it counts the number of times that
the proposed FDDS does not detect all existing faults/time
variance changes.

3) Detection Delay (DD): it measures the time delay (in
number of samples) between when the change started
(either the multiple faults or time variance) and the time
it is detected by the FDDS.

4) Recognition Accuracy (RA): it measures the percentage
of experiments where the FDDS is able to correctly isolate
all faults and distinguish between faults and time variance
in P.

In addition, we also measured the execution time £T" (CPU
time). For this purpose, a Server Dell PowerEdge T710 with 24
cores (2.4Ghz) and 48GB of RAM was employed. This allows
the reader to quantitatively evaluate the time complexity of the
proposed FDDS.

E. Discussions

The experimental results about multiple faults and time
variance for both synthetic and real-world datasets are shown
in Tables and respectively.

Several comments arise. First, the proposed FDDS guaran-
tees lower FP, FN, DD and ET than [[6] (see columns 2-5
and 7-10 in Tables [I[{IT). As expected, FNs and DDs decrease
with the magnitude of the abrupt fault. The stuck-at fault
model provides results that are in line or even better than
those obtainable in correspondence with the abrupt one, as the
stuck-at fault completely changes the dynamics of the acquired
datastream, which is reflected in the estimated parameters.
It should be emphasized that ETs of the proposed FDDS
are significantly lower compared with those of the contrasted
solution (this is a relevant aspect when dealing with embedded
units of LCPSs) as shown in columns 5 and 10 in Table [
Moreover, as expected, ET increases with N since the
proposed FDDS requires to process data coming from a larger
number of sensors.

Second, the results on the dataset coming from the rock-
collapse forecasting application are in line with those obtained
with synthetic data (see rows 8-10 in Tables [[{[Il). The
proposed FDDS identified two clusters out of the 13 sensors
meaning that acquired data are (as expected) related in time
and space. Similarly, the results regarding the WLAN data are
also encouraging and the superiority of the proposed FDDS
is shown with respect to both Uplink and Downlink data (see
rows 11-16 of Tables [INII). Even in this case the datastreams
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are related in time and space and the number of clusters
discovered by the algorithm is two.

Third, FN and DD about time variance in P are particularly
interesting (Tables [VIVI). As expected, the larger the A the
smaller FN and DD. Results provided by the proposed FDDS
are significantly better than the ones of the contrasted solutions
since the latter relies on one change detection mechanism for
each SISO model and this might dramatically increase FP
detections. In all the configurations, i.e., {30%,50%, 70%},
FN rates are very satisfactory, while DDs are quite low due to
the ability of the HMM change detection mechanisms in char-
acterizing the statistical behaviour of the acquired datastreams
and providing decreasing log-likelihoods. Interestingly, the
contrasted solution is not able to detect the changes affecting
only 30% of the sensors since its analysis is carried out by
considering the whole set of sensors.

Fourth, the great ability of the proposed FDDS in isolating
all faults and distinguishing between multiple faults and time
variance is shown by the high RA values (see columns 6, 11
in Tables [[{VI). As regards multiple faults, both solutions are
effective in distinguishing between faults and time variance
(columns 6, 11 in Tables [IfITl). Differently, in case of time
variance, the proposed solution is meaningfully better in rec-
ognizing the occurrence of time-variance and distinguishing it
from multiple-faults thanks to the cluster level analysis.

VII. CONCLUSIONS

This work proposes a novel model-free FDDS able to
operate in LCPSs. It is based on the learning and exploitation
of functional relationships existing among the datastreams
produced by sensors of the LCPS by means of a novel cluster-
ing mechanism. The proposed FDDS relies on HMM change
detection mechanisms operating in the space of the coefficients
of MISO LTI models and their outcomes are aggregated at
the intelligent level, where the proposed FDDS is able to
isolate multiple faults and differentiate between faults and time
variance in the system under inspection. The performance of
the proposed FDDS has been thoroughly evaluated on both
synthetic and real-world large-scale datasets.

Future works include the design of the fault identification
and accommodation phases. We intent to develop an identi-
fication algorithm operating in an online manner, i.e., able
to automatically create fault models, identify faults in the
incoming datastreams, and create/update the fault dictionary.
Once the fault/time variance has been verified, the proper
accommodation phase will be actuated to reduce the effects
of the fault on the system and avoid potentially catastrophic
cascade effects (e.g. by using virtual sensors or retrain the
models at the cluster level).
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TABLE 1. EXPERIMENTAL RESULTS WITH MULTIPLE FAULTS WHERE THE PERCENTAGE OF AFFECTED SENSORS IS 5%.
Proposed FDDS FDDS in [6]
fault type FP(%) | FN(%) | DD | ET (s) | RA(%) FP(%) | FN(%) | DD | ET (s) | RA(%)
I abrupt, o=0.15 10.2 4.1 38.7 573.9 100 19.6 16.7 74.2 1128.4 100
i abrupt, «=0.3 8.9 2.8 31.9 572.1 100 15.4 12.1 62.5 1121.5 100
2] stack-at 2.1 4.5 28 573.9 100 79 31.9 64.1 1128.4 100
7 abrupt, a=0.15 12.1 53 459 916 100 21.9 18.7 78.1 1865.8 100
i abrupt, a=0.3 10.3 4.9 41.4 902.5 100 18.5 16.4 73.2 17533 100
2] stack-at 5.3 4.5 31 902.6 100 7.3 15.6 39 17533 100
8 abrupt, a=0.15 6.2 6.5 16.7 289.3 100 7.8 8.6 61.4 321.8 100
=) abrupt, «=0.3 3.2 5.6 8.4 284.4 100 52 6.1 52.1 318.7 100
&~ stack-at 5.2 4.5 34.1 2933 100 10.3 3.7 38.9 321.4 100
= abrupt, a=0.15 6.3 6.7 36.8 837.5 100 8.9 7.5 47.1 1617.4 100
E abrupt, «=0.3 5.1 5.9 31.9 819.8 100 8.1 6.4 40.1 1587.7 100
= stack-at 3.7 3.5 32.7 787.4 100 59 9.2 41.2 1512.8 100
=) abrupt, a=0.15 5.8 2.5 22.6 968.8 100 9.8 7.9 32.6 1229.1 100
g abrupt, a=0.3 4.9 2.3 21.5 1120.4 100 8.3 7 29.4 1444 100
=3 stack-at 6.1 1.9 18.3 1132 100 10.9 5.5 28.9 1522.1 100

TABLE II. EXPERIMENTAL RESULTS WITH MULTIPLE FAULTS WHERE THE PERCENTAGE OF AFFECTED SENSORS IS 10%.
Proposed FDDS FDDS in [6]
Tault type FP(%) | FN(%) | DD | ET (s) | RA(%) FP(%) | FN(%) | DD | ET (s) | RA(%)
I abrupt, @=0.15 8.1 3.6 36.7 402.5 100 16.3 16.1 76.4 697.6 100
i abrupt, a=0.3 7.1 2.7 22.7 360.2 100 13.3 6.7 66.3 663.9 100
2] stack-at 0.3 2.6 23.7 386 100 6.2 274 574 706.7 100
7 abrupt, a=0.15 9.6 6.8 334 1411.3 100 17.4 18.5 78.2 2859.1 100
i abrupt, a=0.3 8.3 5.9 31.6 1362.7 100 14.5 12.8 74.4 2936.6 100
2] stack-at 3.8 3.3 28.5 1075.2 100 6.4 13.3 36.2 2871.8 100
H abrupt, a=0.15 5.9 4.8 12.6 480.1 100 8.9 7.3 52.3 710.4 100
=) abrupt, «=0.3 2.4 3.7 6.3 472.5 100 35 4.7 46.8 703.6 100
&~ stack-at 6.7 1.2 233 469.3 100 8.7 1.8 329 690.4 100
= abrupt, o=0.15 5.9 7.3 38.8 701.2 100 8.4 10.3 45.8 1360.2 100
E abrupt, «=0.3 3.9 4 34.8 851.8 100 7.3 8.4 41.1 1590.5 100
= stack-at 3.9 4.4 35.7 709.2 100 5.4 6.1 49.3 1345.8 100
=) abrupt, a=0.15 3.1 7.5 68 1066.7 100 5.8 10.9 76.9 1403.9 100
g abrupt, a=0.3 1.9 6.9 64.4 972.1 100 4.3 8.7 75.5 1302.4 100
= stack-at 1.9 7.1 67.1 959.4 100 4.3 9.7 74.2 1249.9 100

TABLE III. EXPERIMENTAL RESULTS WITH MULTIPLE FAULTS WHERE THE PERCENTAGE OF AFFECTED SENSORS IS 15%.
Proposed FDDS FDDS in [6]
fault type FP(%) | FN(%) DD ET (s) | RA(%) FP(%) | FN(%) DD ET (s) | RA(%)
2 abrupt, @=0.15 7.8 33 345 590.7 100 15.3 13.2 73.1 1108.9 100
i abrupt, @=0.3 6.4 2 19.6 5443 100 11 6.1 57.6 | 11264 100
2 stack-at 0.2 1.4 18.5 575.3 100 5.4 55 54.1 1118.9 100
= abrupt, @=0.15 9.1 5.9 31 934.9 100 16.8 17.3 63.9 1840 100
i abrupt, @=0.3 8.3 4.2 28.1 919.2 100 14.1 15 59.1 1840.2 100
n stack-at 35 3.1 25.2 947.9 100 5.1 10.4 32.9 1813.2 100
£ | abrupt, a=0.15 3.2 6 14.8 293.9 100 6.7 9 59.7 325.2 100
= abrupt, @=0.3 2.5 5.1 8.6 291.3 100 42 6.3 42.1 320.7 100
& stack-at 7.1 1.5 13.8 2954 100 9.1 2.3 34.6 3424 100
= | abrupt, a=0.15 42 5.1 38.8 833.6 100 8.8 7.6 46.7 | 1597.1 100
g abrupt, «=0.3 39 43 38 833.6 100 74 52 431 1597.1 100
= stack-at 3.9 47 352 849 100 7.3 6.8 479 1 1564.7 100
A | abrupt, a=0.15 2.1 6.9 653 | 1110.1 100 2.1 9.4 89.2 | 14444 100
E abrupt, @=0.3 2 6.7 62.4 | 11105 100 2 9.5 952 | 1440.2 100
= stack-at 2 6.8 64.2 1093.1 100 2.1 9.3 86.9 1456.9 100
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TABLE IV. EXPERIMENTAL RESULTS WITH TIME VARIANCE WHERE THE PERCENTAGE OF AFFECTED SENSORS IS 30%.
Proposed FDDS FDDS in [6]
A FP(%) | FN(%) | DD | ET (s) | RA(%) FP(%) | FN(%) | DD ET (s) RA(%)
1 0.05 8.3 5.1 13 1489.1 100 - - - 2983.5 -
i 0.07 4.1 1.5 9 1427.7 100 - - - 2902.6 -
@n 0.1 2.7 0.9 6 1429.4 100 - - - 2887.6 -
? 0.05 8.7 5.6 15 6052.7 100 - - - 14517.3 -
i 0.07 53 2.4 9 6588.4 100 - - - 8856 -
2 0.1 2.5 1.4 7 6801.6 100 - - - 9895.4 -
TABLE V. EXPERIMENTAL RESULTS WITH TIME VARIANCE WHERE THE PERCENTAGE OF AFFECTED SENSORS IS 50%.
Proposed FDDS FDDS in [6]
A FP(%) | FN(%) DD ET (s) | RA(%) FP(%) | FN(%) DD ET (s) | RA(%)
3 0.05 7.3 5 122 | 2113.8 100 235 22.7 542 | 2670.6 81.5
i 0.07 39 3.6 9.5 2139.3 100 20.9 19.6 49.3 | 2700.5 85.4
0 0.1 2.1 1.5 6.7 2101.4 100 18.9 17 457 | 2670.8 87.9
2 0.05 8.9 6.4 19 2512.1 100 24.9 233 59 3851.9 75.6
i 0.07 7.5 53 14 1792.8 100 19.7 21.1 49.2 | 28169 84.3
2 0.1 43 24 8 1802.1 100 16.5 18.2 453 | 28309 87.4
TABLE VL EXPERIMENTAL RESULTS WITH TIME VARIANCE WHERE THE PERCENTAGE OF AFFECTED SENSORS IS 70%.
Proposed FDDS FDDS in [6]
A FP(%) | FN(%) DD ET (s) | RA(%) FP(%) | FN(%) DD ET (s) | RA(%)
f 0.05 6.2 49 11.9 | 2403.5 100 21.9 20.1 509 | 2895.9 89.2
i 0.07 3.1 2.9 8 2329.1 100 15.3 17.1 452 | 2603.7 92.1
2 0.1 1.5 1.4 5.7 23439 100 12.4 16.9 429 2698 96.4
[ 0.05 7.5 6.9 16.7 | 2165.6 100 229 21.4 522 | 3509.6 88.9
i 0.07 6.3 5.1 12.6 | 22004 100 19.4 18.4 459 | 3511.7 91.9
2 0.1 5.5 43 8.9 1792.4 100 145 17.3 435 | 2800.7 95.9

collapse forecasting,” in Mobile Adhoc and Sensor Systems, 2010 IEEE
7th International Conf. on. 1EEE, 2010, pp. 224-231.
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